1038.Proposed by D. M. Bătinetu̧-Giurgiu, Matei Basarab National College, Bucharest,

Romania and Neculai Stanciu, George Emil Palade Secondary School, Buzău, Romania.
Let m be a nonnegative real number and x, y be positive real numbers. Prove that, for any triangle $A B C$ with side lengths a, b, c where $[A B C]$ denotes the area of triangle,

$$
\frac{a^{m+2}}{(x b+y c)^{m}}+\frac{b^{m+2}}{(x c+y a)^{m}}+\frac{c^{m+2}}{(x a+y b)^{m}} \geq \frac{4 \sqrt{3}}{(x+y)^{m}} \cdot[A B C] .
$$

Solution by Arkady Alt, San Jose ,California, USA.

Let $u:=\frac{x b+y c}{x+y}, v:=\frac{x c+y a}{x+y}, w:=\frac{x a+y b}{x+y}$ and $I_{m}:=\frac{a^{m+2}}{u^{m}}+\frac{b^{m+2}}{v^{m}}+\frac{c^{m+2}}{w^{m}}$
then $\sum_{c y c} \frac{a^{m+2}}{(x b+y c)^{m}} \geq \frac{4 \sqrt{3}}{(x+y)^{m}} \cdot[A B C] \Leftrightarrow I_{m} \geq 4 \sqrt{3} \cdot[A B C]$.
We will prove that $I_{m+1} \geq I_{m}$ for any $m \in \mathbb{N} \cup\{0\}$.
Noting that $I_{0}=a^{2}+b^{2}+c^{2}$ and using inequality $\frac{\alpha^{2}}{\beta} \geq 2 \alpha-\beta, \alpha, \beta>0$ we obtain
$I_{1}=\sum_{c y c} \frac{a^{3}}{u}=\sum_{c y c} a \cdot \frac{a^{2}}{u} \geq \sum_{c y c} a(2 a-u)=I_{0}+\sum_{c y c} a(a-u)=$
$I_{0}+\sum_{c y c}\left(a^{2}-\frac{a(x b+y c)}{x+y}\right)=I_{0}+a^{2}+b^{2}+c^{2}-\sum_{c y c} \frac{a(x b+y c)}{x+y}=$
$I_{0}+\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \geq I_{0}$.
Taking inequality $I_{1} \geq I_{0}$ as base of Math Induction and assuming for any $m \in \mathbb{N}$ that $I_{m} \geq I_{m-1}$ we will prove that $I_{m+1} \geq I_{m}$.
We have $I_{m+1}=\sum_{c y c} \frac{a^{m+3}}{u^{m+1}}=\sum_{c y c} \frac{a^{m+1}}{u^{m}} \cdot \frac{a^{2}}{u} \geq \sum_{c y c} \frac{a^{m+1}}{u^{m}}(2 a-u)=I_{m}+\sum_{c y c}\left(\frac{a^{m+2}}{u^{m}}-\frac{a^{m+1}}{u^{m-1}}\right)=$
$I_{m}+\left(I_{m}-I_{m-1}\right) \geq I_{m}$.
Since $\left(I_{m}\right)_{m \geq 0}$ is increasing sequence then $I_{m} \geq I_{0}=a^{2}+b^{2}+c^{2}$ and
(1) $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \cdot[A B C]$ (Weitzenböck's inequality)
we obtain $I_{m} \geq 4 \sqrt{3} \cdot[A B C]$.
(Or, direct proof of inequality $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \cdot[A B C]$:
Let $x:=s-a, y:=s-b, z:=s-c$ where s is semiperimeter and let $p:=x y+y z+z x$, $q:=x y z$. Also, assume (due to homogeneity) that $s:=1$. Then $a^{2}+b^{2}+c^{2}=2(1-p)$, $[A B C]=\sqrt{q}$ and inequality (1) become $1-p \geq 2 \sqrt{3} \cdot \sqrt{q}$.
Since $p^{2}=(x y+y z+z x)^{2} \geq 3 x y z(x+y+z)=3 q$ and
$1=(x+y+z)^{2} \geq 3(x y+y z+z x)=p$
we obtain $1-p-2 \sqrt{3} \cdot \sqrt{q}=1-3 p+2(p-\sqrt{3 q}) \geq 0)$.

